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Theory of Low-Energy Positron-Helium Scattering*

Richard J. Drachman
Laboratory for Theoretical Studies
National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland
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A modified adiabatic method, previously tested in positron-hydrogen
scattering, has been applied to the case of positron-helium scattering below
the positronium threshold (17.8 ev). Since the ratio of the positron's veloci
to that of the atomic electrons is about the same as in the hydrogen test case|,
similar accuracy is expected, the main source of error being due to the
approximate atomic wave function used. Phase shifts for L = 0,1,2 are presented,

and total and momentum-transfer cross-sections are computed. The lattejézéj; |

agree completely with the only experiments performed to date. 1%;247/



INTRODUCTION

In a recent papert

» the author applied the exact second-order polarization
potential of Dalgarno and ILynn® to the scattering of low-energy positromns by
atomic hydrogen. Several obJections may be brought ageinst this procedure.

First, the polarization potential used is adiabatic, and dces not account
explicitly for velocity-dependent effects. A comparison of the adiabatic
resultst with the detailed variational s-wave phase shifts of Schwartz® indicates
that the polarization potential is too attractive, and a semi-empirical modifi-
cation was introduced to achieve essentially exact agreement. This modification
consisted in suppressing most of the short-range (monopole) parts of the
potential. Besides the good agreement thereby achieved, the Justification for
such a modification was based on the fact that an adisbatic method is most
likely to be in error near the atomic nucleus, where complicated correlations
can occur. The monopole suppression used was energy independent, but nevertheless
excellent s-wave phase shifts resulted over the whole energy range up to the
positronium threshold (6.8 ev).

Second, the possibllity of virtual positfonium formation is not explicitly
included. Since the positronium atom is a large, loosely bound system, it
not too surprising that s-wave scattering is not seriously affected by this
omission, but higher impact parameter (higher angular momentum) scattering
should include more virtual positronium. This is borne out by recent L= 1
and.¥>= 2 lower bound calculations*, which indicate that the polarization
potential method underestimates the attraction in these partial waves. It
is apparently not possible to retain the good s-wave agreement and also fit

the p- and d- wave phase shifts with a simple, L-independent local potential.
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The situation for positron-hydrogen scattering is clear: the modified

adiabatic method will underestimate the total cross-sections as the positronium

threshold is approached, and will also underestimate the angular dependence
of the scattering.

The purpose of the present paper is to apply the polarization potential
method to the elastic scattering of positrons by helium atoms. This problem
is presently too difficult for rigorous solution, but is ﬁuch more accessible
to experiments. This is due to the relatively high threshold for positronium
formation in helium (17.8 ev) compared to that of hydrogen, and also due to
the fact that atomic helium is stable. It seems probable that energy resolved
positron beams will soon be available®, and the helium scattering experiment
should prove feasible. At the moment, one experimental cross-section value
exists®, although the analysis’ is rather intricate, since it involves the
diffusion of a swarm of positrons through gaseous helium under the influence
of an electric field.

It is, thus, of interest to examine the modified adiabatic method as applied
to the helium case. To do this with any hope of success, one must first verify
that the velocity range of interest is appropriate. For the case of hydrogen,
the mean kinetic energy of the atomic electron is 13.6 eV and that of thé
positron is less than 6.8 eV. For Helium, each electron has an average kinetic
energy of 39.5 eV, while that of the positron is less than 17.8 eV. Onelcan
see that the positron moves somewhat slower relative to the electron velocity
for helium than for hydrogen. Thus the semi-classical criterion for an adigbatic

approximation is at least as well satisfied.
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To apply the Dalgarno-Lynn2 potential oﬁe must have a hydrogenic ground
state for the target atom. Using a shielded, uncorrelated hydrogenic wave
function for helium introduces the largest uncontrolled error into the present
work, and it remains to be seen how much error in the scattering this approxi-
mation causes. The only parameters in the theory are the effective nuclear
charge, the monopole suppression factor and one more paraméter which can be

used to bring the static polarizability into agreement with experiment.



The Modified Adiabatic Calculation

The non-relativistic Hamiltonian for the system consisting of a fixed

helium nucleus, two electrons and one positron can be written as follows:

H°+H|1+Hx+\/

-
"

(1)

)

where H
(o]

2 4
- Y., + —]
=12 [ ~4 1A

Here, r; and r> are the position vectors of the two electrons and X is the
. [a™)

position vector of the positron. Atomic units are used with energies in

Rydbergs, lengths in units of the Bohr radius, a,, and momenta in units of

-l )

8o

The modified adiabatic method proposes to use a scattering wave function

of the form

Py (5.5.1) = [1+C(G CATTYC AT WL TER AV



In this equation, ¢(£¢’£2) is the ground state wave function of the helium

atom and satisfies

[Ho t HIZ""Eo] (b:o) | (3)

where E; is the ground state energy. The positron scattering function Xk(g)
has appropriate boundary conditions, while G and Gy are the first-order adiabatic

correlation function and its monopole part, respectively. They satisfy the

equations:

[G;(Ho*Hm“CP: (V- <V>)¢ (4a)

[ GO, (Ho+ H'z\)\ Cb - (V6 i <V°§\ ¢ ) (4b)
@)z (Wndn ¢

G = <G> =0

As in I, both the potential V and the correlation function G may be understood
to be expanded in Legendre polynomials in the angles between X and ra and 2.
The parameter a thus measures the amount of P, (monopole) correlation retained

in Yk’ and C will be discussed later.

L
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Assuming that ¥, has the correct form to satisfy the Schrddinger equation,

k

s

one writes °

([H'Eo'm[' *C(G“Go)+o<(}°]>'><5@:o’ (5)

as the effective Schrddinger equation for the positron.

Using Eqs(4a,b), this becomes
[HX K+ Q) V6 +(E-) ey [ X =0, @

As in the hydrogen case discussed in I, the various terms can be identified
as follows:

<v> is the Pirst-order (static) potential V,(x), < VG > is the second-
order (polarization) potential Va(x), and < VG, > is the second-order monopole
polarization potential Voo(x). To obtain the phase shifts in this approximation
it is necessary to make a partial-wave decomposition of Xk’ and solve the
resulting equations in an entirely straightforward manner.

Of course, the true eigenfunction ¢ describimg the_pglium ground state
is not known exactly, and some reasonably simple approximate wave funetions
must be substituted, in order to evaluate these potentials. (This represents
the only extra inaccuracy in the helium case not appearing in the hydrogen
case.) 1In evaluating V;(x), the two-term analytic approximation to the best

Hartree function was chosen. According to Byatt!®, it yields a first order

potential

- - A% —-Bx
V (0 = X (‘Se -c 5, (1)




where

/\ = :2.‘+<?'ES) E}'= E;.A%'7l%l.

A very similar potential was used without polarization by Malik'!, To evaluate
the second-order potentials, an even simpler form is necessary, or else the
equations for G and Go become intractable. Choosing the uncorrelated, shielded

hydrogenic function

¢(Y’., 2) = TTP et +r\ (8)

one can ea31ly show that the second-order potentials can be cobtained from
the corresponding potentials in the positron-hydrogen case by the following

rule:
\4 C\L)Hel_'wm = 2 \/2 (?\")Hydro%eh . (9)

The second-order potentials for hydrogen are knownz, and are exhibited in I.
It remains to givé reasonable values for the three parameters a, B and C.

If it had been possible to use an exact wave function for the helium
atom (as was the case for hydrogen), the only parameter in the theory wbuld
be a, the amount of monopole distortion retained in the scattering function.
This parameter ought to be between zero and unity, and the results of I favor
o = 0. In the present calculation, both extreme values have been tried.

In I the long-range behavior of the polarization potential was shown to

be

\/2 (*)pydm%en — - 7%+ , (10)
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which shows the correct dipole polarizability, 9/2. In the case of helium,

the corresponding limit gives a polarizability of 9C. The measured’®

g
polarizability is 1.376, and to obtain this value requires C/B4 = 0.1529.
Now, if B is determined by a variational calculation, the minimum energy is
obtained for 8 = 27/16, and then C = 1.240. Another approach argues that the

energy minimum is very flat and that it is preferable to set C = 1, from

vhich it follows that B = 1.5992. Both of these methods were examined®®,
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Results and Discussion

Figs. 1, 2, and 3 show the energy dependence of the phase shift for
L =0, 1, 2 up to the threshold for positronium formation (E.= 1.31). The
four curves represent the extreme values of the monopole sugpression,and the
two methods of adjusting the dipole polarizability discusseavabove. As the
angular momentum increases these curves coalesce, and for L 2 3 an analytic

4

expression'® involving only the dipole polarizability P is sufficiently accurate,

i.e.

b4

S,L P kz/(zL-l) (2L+1) (2£+43) (11)

The total cross section

= = £ 5 (aL+) Sin* §, (12)
L

T k*
is shown in Fig. L4, for the same four cases, in units
of_vg?. In Fig. 5 the momentum-transfer cross-section is similarly displayed.
This cross-section, defined as

\ do (- cAB
G = §do g% (-ere), )

can be written (in units of TaZ) as

in (9 ’81_+
Oy = % 5;, (L+1) sin® (3 |\) (14)

and is the .particular cross-section which is effective in determining the
mean free path for swarm or diffusion measurements. Such a measurement has

been made$ and analyzed” under the assumptions that both oM and the



annihilation rate of free positions in helium are independent of energy, and
that positronium formation is very rapid for any positrons attaining the

threshold energy. The numerical value derived in this way is o,,, = (0.023 &

mr
.006)mZ, and is shown in Fig. 5 by the shaded band. It is seen that there

is no agreement whatsoever between the experiment and any of the theoretical
curves. We have repeated the diffusion analysis of Ref. 7, allowing the cross-
section to take the forms given by the present theory, but the disagreement
remains. Note that we expect the L = 1 and L = 2 phase shifts to be under-
estimated by the present calculation; for the diffusion analysis the higher
energy range is most important. To estimate the effect on the momentum-transfer

cross-section of increasing these two phase shifts one can differentiate Eq. (14)

and replace the sine function by its argument. Then

ATy = T [ (-50+38-28,) a8+ (28,+58,-38,)a, | )

Inserting the values of the phase shifts at threshold, and assuming A8/6 = 0.5
(which is justified by comparison with the results of I) one finds that
increasing §; and &z makes the agreement with experiment®’’ even worse than
before. The experiment6 and its analysié’are not completely‘straightforward,
and further experiments would seem to be desirable.

One other calculation has been recently carried out'® which deserves
mention. It also employs an effective potential which is actually
evaluated in the adiabatic approximation but, in common with similar adisbatic
calculations in hydrogen, only a limited number of maltipoles (0,1,2) were

retained, instead of the complete polarization potential being used. Nevertheless,

strong disagreement with experiment still occurs.
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Figure Capfions

Fig. 1. Phase shifts in radians for s-wave scattering. The four sets of
parameters discussed in the text are shown. The abscissa is in
atomic units of momentum.

Fig. 2. Phase shifts in radians for p-wave scattering. The four sets of
parameters discussed in the text are shown. The abscissa here is
in energy units.

Fig. 3. Phase shifts in radians for d-wave scattering. The four different
curves are very close, and are shown as a band. The abscissa again
is in energy units, and the linear relation of Eq. (11) is shown to
agree well.

Fig. 4. Total cross-sections in units of naf, including L = 0,1,2,3 partial
waves, for the four cases discussed.

Fig. 5. Momentum-transfer cross-sections in units of ﬂaf, including L = 0,1,
2,3 partial waves, for the four cases discussed. The "experimental
result (Ref. 7) is shown by the shaded band.
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